
Fast Octree Neighborhood Search for SPH Simulations

JOSÉ ANTONIO FERNÁNDEZ-FERNÁNDEZ, RWTH Aachen University, Germany

LUKAS WESTHOFEN, RWTH Aachen University, Germany

FABIAN LÖSCHNER, RWTH Aachen University, Germany

STEFAN RHYS JESKE, RWTH Aachen University, Germany

ANDREAS LONGVA, RWTH Aachen University, Germany

JAN BENDER, RWTH Aachen University, Germany

Fig. 1. Multi-resolution Smoothed Particle Hydrodynamics simulation of a swinging box that contains fluid and deformable objects. 5.6 million particles
(from blue to white) are used to discretize the fluid and a total of 12 thousand particles (in red, green and yellow) are used to discretize the three deformable
objects. The fluid particles have 2.5 times smaller radius than the ones used for the solids. The octree used to accelerate the neighborhood search is shown as a
white wireframe. On the le�, a far view shows the adaptivity of our acceleration structure at a global scale. On the right, a close up picture be�er shows the
di�erence in particle sizes and how the octree behaves around that area of interest. For be�er visibility on the right picture, we show the octree uniformly
coarsened by one level.

We present a new octree-based neighborhood search method for SPH simu-

lation. A speedup of up to 1.9x is observed in comparison to state-of-the-art

methods which rely on uniform grids. While our method focuses on maxi-

mizing performance in �xed-radius SPH simulations, we show that it can

also be used in scenarios where the particle support radius is not constant

thanks to the adaptive nature of the octree acceleration structure.

Neighborhood search methods typically consist of an acceleration struc-

ture that prunes the space of possible particle neighbor pairs, followed by

direct distance comparisons between the remaining particle pairs. Previous

works have focused on minimizing the number of comparisons. However, in

Authors’ addresses: José Antonio Fernández-Fernández, RWTH Aachen University,
Aachen, Germany, fernandez@cs.rwth-aachen.de; Lukas Westhofen, RWTH Aachen
University, Aachen, Germany, l.westhofen@cs.rwth-aachen.de; Fabian Löschner,
RWTH Aachen University, Aachen, Germany, loeschner@cs.rwth-aachen.de; Stefan
Rhys Jeske, RWTH Aachen University, Aachen, Germany, jeske@cs.rwth-aachen.de;
Andreas Longva, RWTH Aachen University, Aachen, Germany, longva@cs.rwth-
aachen.de; Jan Bender, RWTH Aachen University, Aachen, Germany, bender@cs.rwth-
aachen.de.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.
0730-0301/2022/12-ART242 $15.00
https://doi.org/10.1145/3550454.3555523

an e�ort to minimize the actual computation time, we �nd that distance com-

parisons exhibit very high throughput on modern CPUs. By permitting more

comparisons than strictly necessary, the time spent on preparing and search-

ing the acceleration structure can be reduced, yielding a net positive speedup.

The choice of an octree acceleration structure, instead of the uniform grid

typically used in �xed-radius methods, ensures balanced computational

tasks. This bene�ts both parallelism and provides consistently high com-

putational intensity for the distance comparisons. We present a detailed

account of high-level considerations that, together with low-level decisions,

enable high throughput for performance-critical parts of the algorithm.

Finally, we demonstrate the high performance of our algorithm on a

number of large-scale �xed-radius SPH benchmarks and show in experi-

ments with a support radius ratio up to 3 that our method is also e�ective

in multi-resolution SPH simulations.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional KeyWords and Phrases: Neighborhood Search, Smoothed Particle

Hydrodynamics

ACM Reference Format:

José Antonio Fernández-Fernández, Lukas Westhofen, Fabian Löschner,

Stefan Rhys Jeske, Andreas Longva, and Jan Bender. 2022. Fast Octree Neigh-

borhood Search for SPH Simulations. ACM Trans. Graph. 41, 6, Article 242

(December 2022), 13 pages. https://doi.org/10.1145/3550454.3555523

ACM Trans. Graph., Vol. 41, No. 6, Article 242. Publication date: December 2022.

HTTPS://ORCID.ORG/0000-0003-4651-7542
HTTPS://ORCID.ORG/0000-0003-4427-2377
HTTPS://ORCID.ORG/0000-0001-6818-2953
HTTPS://ORCID.ORG/0000-0003-3920-7765
HTTPS://ORCID.ORG/0000-0002-6665-8302
HTTPS://ORCID.ORG/0000-0002-1908-4027
https://orcid.org/0000-0003-4651-7542
https://orcid.org/0000-0003-4427-2377
https://orcid.org/0000-0001-6818-2953
https://orcid.org/0000-0003-3920-7765
https://orcid.org/0000-0003-3920-7765
https://orcid.org/0000-0002-6665-8302
https://orcid.org/0000-0002-1908-4027
https://doi.org/10.1145/3550454.3555523
https://doi.org/10.1145/3550454.3555523

242:2 • Fernández-Fernández, et al.

1 INTRODUCTION

Smoothed Particle Hydrodynamics (SPH) is an established meshless

method for simulating �uids, elastic solids and granular material.

SPH expresses quantities of interest for a given particle — such as

density or pressure forces — as a sum of contributions from neigh-

boring particles in close proximity. The identi�cation of neighboring

particles — the neighborhood search — is therefore an integral com-

ponent of all SPH simulators. Two particles are neighbors if the

distance between them is smaller than the support radius of the

SPH kernel. Historically, most SPH simulators in computer graphics

have used constant support radii. This assumption has been ex-

ploited by specialized �xed-radius neighborhood search algorithms.

A key idea often used in �xed-radius neighborhood search meth-

ods is the placement of each particle in a sparse uniform grid with

cell size equal to the support radius. Then all neighbors of a particle

are guaranteed to be located in the cell of the particle or in any of

the adjacent neighbor cells. This way, the �xed-radius approach

performs an almost minimal number of distance comparisons to

determine if two particles are truly neighbors. On the other hand,

the small number of particles considered for each grid cell makes it

di�cult to fully exploit vectorization and pipelining in modern CPU

hardware — key enablers for high performance. Furthermore, the

small size of the cells necessitates a larger number of cells, leading

to noticeable computational costs for managing the acceleration

structure itself.

We �nd that if we use appropriately sized, larger — and therefore

fewer — cells, the computational cost of the acceleration structure is

signi�cantly reduced, but the overall cost of the brute-force distance

comparisons is only marginally increased. Therefore, the overall

cost is lower.

By aggregating particles into these larger cells, we �nd that it is

favorable to exchange the sparse uniform grid acceleration structure

with a specialized octree algorithm where the tree leaf nodes consist

of clusters of cells. The top-down octree construction clusters cells so

that each leaf node has approximately the same number of particles,

regardless of the number of cells, which bene�ts parallelism and

ensures that the brute force stage always works on a near-optimal

number of particles, thereby maximizing throughput. Contrary to

conventional wisdom, which suggests using the support radius

as cell size is essential to performance, we demonstrate through

numerous examples that our method is consistently faster than

state-of-the-art �xed-radius methods.

A seemingly limitless number of choices can be made in the

design of a tailor-made acceleration structure. In this paper we

present high-level decisions in detail that enable high throughput for

performance-critical parts of the algorithm. In this context, we put

special emphasis on vectorization and a branchless implementation.

Some state-of-the-art methods z-sort the particle data and then

rely on this ordering for gathering particle data for distance compar-

isons. Sorting particle data in this way is in any case bene�cial to

SPH methods, as it improves cache locality for the SPH loops [Ihm-

sen et al. 2011]. However, it is generally not necessary to do this

for every time step of the simulation; amortizing this cost over sev-

eral time steps is usually preferable. Our method does not require

z-sorted particle data to produce correct output. Instead, we propose

a technique in which we take advantage of almost sorted data for a

more compact representation of particle data in our octree.

Although the �xed-radius assumption has proved to be e�ective

for simulating single-phase �uids, it nonetheless imposes severe

limitations on complex multi-physics simulations, such as multi-

phase �uids or �uid-solid interaction. In these settings, it is natural

to want to use di�erent support radii for di�erent objects. Here,

slow-moving, viscous �uids or elastic solids generally require fewer

particles for high-�delity results compared to the intricate patterns

formed by swirling water.

To ensure e�cient simulations in these settings, we must do

away with the �xed-radius assumption. Our proposed octree-based

method is also capable of handling SPH simulations where particles

have di�erent support radii. Our results therefore challenge the

prevalent notion that the �xed-radius assumption is the key to fast

neighborhood search in SPH simulators.

We demonstrate the performance of our method across both �xed-

radius and multi-resolution examples. Our fast neighborhood search

requires only roughly 5%-10% of the total simulation time across

all of our examples, and consistently outperforms a representative

state-of-the-art �xed-radius method across all of our �xed-radius

benchmarks, with a speedup of up to 1.9x. Fig. 1 illustrates the

distribution of particles in our octree in a large-scale multi-physics

scene.

2 RELATED WORK

In this work we present a neighborhood search approach that is

speci�cally tailored for SPH. SPH is a popular method in computer

graphics for the simulation of a wide range of materials and ef-

fects. First, we will show an overview of relevant publications about

SPH in general followed by a discussion of works on neighborhood

search. Finally, we will classify and summarize the most prevalent

approaches for neighborhood search and elaborate on their limita-

tions that inspired our work.

2.1 Smoothed particle hydrodynamics

While the SPH formulation was originally introduced in the �eld

of astrophysics [Gingold and Monaghan 1977], today’s application

areas also include the �eld of computer graphics. Recent advance-

ments involve the simulations of incompressible �uids [Bender and

Koschier 2017; Ihmsen et al. 2014a], highly viscous materials [Taka-

hashi et al. 2015; Weiler et al. 2018], deformable solids [Kugelstadt

et al. 2021; Peer et al. 2017] and snow [Gissler et al. 2020]. An

overview over current research can be found in the latest surveys by

Ihmsen et al. [2014b] and Koschier et al. [2022]. For simulating the

aforementioned e�ects, the SPH method relies on locally computing

the required physical quantities by interpolation using the discrete

particles inside a given support radius, which is typically dependent

on the particle radius. In computer graphics it is common practice

to use the same support radius for all particles.

However, to improve runtime, incorporating di�erent particle

resolutions may be considered to signi�cantly reduce the amount

of particles without sacri�cing visual quality. For example, in simu-

lations between a low and highly viscous �uid a �ne resolution is

ACM Trans. Graph., Vol. 41, No. 6, Article 242. Publication date: December 2022.

Fast Octree Neighborhood Search for SPH Simulations • 242:3

needed to capture the high frequency motions of the former mate-

rial, while larger particles can be used for the latter. Thus, choosing

an independent, appropriate resolution may help to speed up the

simulation signi�cantly.

Incorporating this concept, Desbrun and Cani [1999] spatially

adapt the particle resolution based on the density deviation of neigh-

boring particles. The idea of particle splitting and merging was also

adopted in several recent publications [Adams et al. 2007; Winchen-

bach et al. 2017; Winchenbach and Kolb 2021]. Another approach is

to utilize di�erent, distinct particle resolutions in desired regions of

interest [Horvath and Solenthaler 2013; Solenthaler and Gross 2011].

While all of the aforementionedmethods show a signi�cant improve-

ment in simulation quality or e�ciency, special attention must be

given to computing the neighborhood of each particle. As denoted by

Xia and Liang [2016], incorporating a single, standard �xed-radius

neighborhood search algorithm like compact hashing [Ihmsen et al.

2011] must use the largest support radius of all particles to avoid arti-

facts. This introduces signi�cant computational overhead for smaller

particles since their associated computations will include several par-

ticles outside their support radius. Hoverath and Solenthaler [2013]

as well as Solenthaler and Gross [2011] execute one neighborhood

search for each level of detail in their multi-resolution approaches.

This leads either to an increased memory footprint at the interface

of di�erent resolutions or requires an unphysical boundary region.

In summary, e�ciently determining the neighborhood in spatially

adaptive SPH simulations is a challenging task.

2.2 Neighborhood search

In SPH-based simulations the neighborhood search step is an inte-

gral component since a �eld quantity for a �uid particle is computed

by interpolating over its neighboring particles within the support

radius of the SPH kernel. Therefore, di�erent approaches have been

proposed in the computer graphics community. An overview of

CPU- and GPU-based algorithms can be found in the survey of

Ihmsen et al. [2014b]. We focus on CPU-based algorithms, which,

despite the advent of e�cient GPU simulators, remain relevant es-

pecially for very large simulations that are limited by the amount

of available memory, such as those shown by Band et al. [2020].

State-of-the-art neighborhood search methods are mainly based

on either spatial grids, Verlet lists [Verlet 1967] or hierarchical data

structures. Nowadays, the computer graphics community tends to-

wards uniform grid-based methods. These store the particles inside a

uniform background grid and calculate the neighbors of a particle by

querying the adjacent cells. Most grid-based approaches are either

based on Cell-Linked Lists (CLL) [Band et al. 2020; Domínguez et al.

2010; Green 2010; Pelfrey and House 2010] or hash maps [Ihmsen

et al. 2011; Tang et al. 2018; Winchenbach and Kolb 2020]. While

o�ering fast construction and query times from the standpoint of

computational complexity, grid-based methods may su�er from

high cache miss rates on the CPU if the particles are not spatially

indexed and sorted. Regardless of the spatial sorting, the resulting

neighbor lists are recomputed in each time step.

Leveraging the temporal coherence of neighboring particles, the

idea of Verlet lists is to extend the amount of potential neighbors

in relation to a particle’s velocity. Thus, these predicted neighbors

may help to speed up the neighborhood search [Viccione et al. 2008;

Willis et al. 2018]. The main disadvantages of using Verlet lists is

the computational overhead if the prediction fails to capture the

movement of particles and the increased memory footprint. The

latter also results in them being unfavorable for large-scale and

GPU-based simulations.

Both of the aforementioned concepts can be modi�ed to suit

adaptive particle radii. Winchenbach and Kolb [2020] use a hashed,

multi-resolution grid, which exploits the self-similarity of Morton

codes for the particle sorting. This way, it is possible to query the

acceleration structure at di�erent resolution levels depending on

the support radius of any individual particle. Regarding Verlet lists,

Winchenbach et al. [2016] compute memory constrained neighbor

lists in a predictor-corrector fashion which allows for variable sup-

port radii. In this method, the support radius of a particle is adjusted

so that a maximum �xed number of neighbors is attained.

Tree-based neighborhood search methods have also been used to

tackle the neighborhood search in spatially adaptive SPH simula-

tions [Harada et al. 2007; Hernquist and Katz 1989; Xia and Liang

2016]. Since this acceleration structure yields a multi-resolution

view of the simulation domain, neighboring particles can easily be

determined by a traversal of the tree.

The previously denoted categories of neighborhood search algo-

rithms have also been adapted to better suit the strengths of the used

underlying hardware. Examples leveraging the streaming architec-

ture of GPUs include grid-based [Green 2010; Gross et al. 2019],

Verlet list-based [Willis et al. 2018] and tree-based methods [Xia

and Liang 2016].

Our novel approach can be classi�ed as a tree-basedmethod. How-

ever, instead of using the acceleration structure for tree-traversal

based neighbor checks, the employed octree functions as a domain

decomposition. In contrast to traditional grid-based methods, the

resulting task size for the brute force stage adapts to the underlying

�uid geometry.

3 METHOD

In the following, we de�ne the neighborhood search problem in the

context of SPH (Section 3.1), and give a high-level overview of how

our method solves the problem (Section 3.2). We provide a detailed

account of the implementation details of our method in Section 3.3.

In Section 3.4, we discuss the required extensions that enable our

method to be used for variable support radii. Finally, we discuss the

di�erences to other fast �xed-radius methods in Section 3.5.

3.1 Problem description

In the standard �xed-radius SPH formulation, a scalar �eld 5 is

approximated by interpolating values from a discrete set of particles

as

5 (x8) =
∑

9 ∈N8

< 9

d 9
5 (x9), (x8 − x9 , ℎ), (1)

where< 9 , d 9 and x9 are the mass, the density and the position of

particle 9 ., is a compactly supported kernel with smoothing length

ℎ and support radius A . This means that only the particles within

the support radius A of x8 have a non-zero contribution to the value

of 5 (x8). Hence, we only sum up contributions of particles 9 that

ACM Trans. Graph., Vol. 41, No. 6, Article 242. Publication date: December 2022.

242:4 • Fernández-Fernández, et al.

are in the neighborhood N8 = { 9 | ∥x8 − x9 ∥2 ≤ A } of particle 8 .

Therefore, SPH simulators require e�cient neighborhood search

methods to determine the neighborhood N8 for each particle 8 .

3.2 Method overview

A global brute force approach to the neighborhood search problem

has a complexity of $ (=2), which is prohibitive even for medium

sized simulations. To address this, our method, like most other

approaches, uses an acceleration structure to decompose the global

problem into many self-contained subproblems so that checking

particle pairs with a large distance is avoided.

Our method employs a novel two stage acceleration structure: In

a problem reduction preprocessing step, we assign all particles to

the cells of an encapsulating uniform grid. Then, we use an octree

to adaptively �nd clusters of non-empty grid cells which in total

approximately contain a speci�ed number of particles. Finally, we

use a brute force approach on the particles of each cluster to generate

the corresponding neighbor lists. All stages are performed using

optimized SIMD code which is discussed in Section 3.3. An overview

of our approach is shown in Fig. 2.

State-of-the-art solutions for the neighborhood search problem

that solely use uniform grids rely on two operations where modern

computer architectures are slow: randommemory reads and hard-to-

predict branching. Our method, on the other hand, is designed with

modern CPU architectures in mind. Almost for the entirety of the

execution time, the CPU is executing branchless code on data that

is contiguous in memory and which has an optimized layout. This

is further enhanced by our octree being able to generate clusters of

a speci�c number of particles, which can be processed with higher

computational e�ciency in comparison to the clusters generated

by uniform grid methods, which are typically very small. These

are the main reasons why our method achieves signi�cant runtime

improvements when compared with uniform grid methods.

3.3 Implementation

In this section we discuss the three main stages (see Fig. 2) of our

method in more detail.

3.3.1 Particles to Cells. We employ a uniform grid to classify the

particles into cells in order to speed up the construction of the

octree, which is the main component of the acceleration structure. In

contrast to uniform grid methods, we do not use the grid for queries

of neighboring cells. Its only purpose is to reduce the number of

entities to be processed in the octree.

To classify the particles into cells, �rst we compute a bounding

box containing all particles. Then we de�ne a uniform background

grid with cell size 3 ∈ R, which encloses the bounding box of the

particles and use the minimum point of the box as origin o ∈ R3.

Our results show that a good choice for the cell size is 1.5 times the

support radius (Section 4). The integer coordinates (:, ;,<)2 ∈ N3
0

of a cell 2 that contains a particle 8 is given by the component-wise

�oor function

(:, ;,<)2 =

⌊
x8 − o

3

⌋
. (2)

By subtracting the origin, all cell coordinates are non-negative. We

denote by P2 the set of particle indices assigned to 2 and by Ω2 ⊂ R3

the physical domain of the cell.

The input to our octree construction algorithm (Section 3.3.2) is an

array of cells. Conceptually, each cell contains a set of particles. One

way to compute the cells is to �rst sort all the particles according

to their Morton code [Morton 1966] with respect to the uniform

grid. We refer to this process as z-sorting. Then all the particles

inside a given cell will share the same Morton code, and therefore

will be next to each other in the sorted particle array. This is the

approach used to construct the CLL data structure employed by

Band et al. [2020]. The array of cells can then be constructed by

identifying sequences of particles that share the same Morton code

in the sorted particle array. Since the particles for a given cell are

contiguous in the particle array, the particle range associated with

a cell can be compactly represented by the begin and end o�sets to

the particle array. This idea is illustrated in Fig. 3.

Since we tend to assign approximately 30 particles to each cell

(Section 4), this means that the octree, which only works with cells

and not individual particles, only processes about 1/30 the number

of entities compared to the total particle count, which signi�cantly

reduces the computational cost of the acceleration structure. The

actual particle data is only gathered in the brute force stage.

A problem with this approach is that a full z-sort on the list of

particles can add signi�cant computation time to the neighborhood

search. A key component of our approach is the realization that the

particle list does not need to be perfectly z-sorted before handing

o� the resulting cells to the octree construction algorithm. Nothing

changes in the octree algorithm if two ranges of particles share the

same cell in the uniform grid but are not contiguous in the particle

array. Since SPH methods anyway tend to occasionally z-sort the

particle data for improving cache behavior [Ihmsen et al. 2011], we

can therefore exploit the fact that the particle data is expected to

be almost z-sorted anyway. In the absence of a perfectly z-sorted

sequence of particles, our method will still greedily cluster them

as described above. In the worst case, if the particles are not close

to be z-sorted, our method will still produce the correct result, but

performance will degrade: the number of cells in the octree will get

closer to the number of particles. To avoid this, we force a global

z-sort of the particles before the �rst time step of the simulation.

Our results show that it is su�cient to z-sort the particles every few

time steps (Section 4).

3.3.2 Octree. We use an octree to divide the global problem into

smaller, self-contained subproblems by clustering cells at the leaves

of the octree. The octree is aligned to the uniform grid so that any

grid cell is geometrically contained in exactly one leaf node. The

uniform grid has a power of two number of cells in each direction

to ensure that splits in half do not invalidate that restriction. The

grid cells that are geometrically contained in an octree leaf node

are the interior cells for the node. In addition, each leaf node has a

set of exterior cells. These are the cells that are not geometrically

contained inside the leaf node, but have particles that are potential

neighbors with the particles in the interior cells.

By construction, each cell is therefore interior in exactly one leaf

node, and the complete neighborhood N8 for any particle 8 in that

ACM Trans. Graph., Vol. 41, No. 6, Article 242. Publication date: December 2022.

Fast Octree Neighborhood Search for SPH Simulations • 242:5

Brute forceParticles Grid Octree

Acceleration structure

Fig. 2. Overview of our method. The input to our method is a list of particles from an SPH simulation. To build an acceleration structure for our method we
first map particles to cells of a background grid using Morton z-indices. The set of all non-empty cells is then geometrically subdivided using an octree until all
octree leaves approximately contain a specified number of particles. As the octree only works on cells we can avoid looping over any particles in this stage.
Finally, for each octree leaf a brute force neighborhood search is performed.

cell is a subset of the particles in the leaf node cells (interior and

exterior). This implies that the neighborhood search can be broken

down into independent subproblems: the neighborhoods of interior

particles in each octree leaf node can be computed independently

in parallel.

The octree is constructed in a top-down manner. Consider an

octree node T with domain Ω ⊂ R3. We de�ne Ω̃ as the extended

domain obtained by enlarging Ω by the support radius in all coordi-

nate directions.

Starting with the root node of the octree, each octree node T

is recursively split into eight equally sized child nodes with non-

overlapping domains (see Fig. 4), in the usual octree fashion. A cell 2

in T is assigned to a child node Tchild if the cell domain Ω2 overlaps

with octree node domain Ω̃child.

If T contains only a single interior cell, or the total number of

particles across all cells in T is smaller than a constant threshold,

we do not subdivide it further, which means that T is a leaf node.

We study the optimal number of particles per leaf node in Section 4.

3.3.3 Brute force stage. After the octree construction, we are left

with a collection of individual subproblems, one per leaf node of the

octree. The �nal task is to compute the neighbor lists of the interior

particles of each leaf node T , de�ned as the particles that belong

to the interior cells of T . The remaining exterior particles are the

particles in the exterior cells of T . All neighbors of any interior

particle are by construction either internal or external particles of

the node.

At this point, only the leaf and cell data for a task is known, there-

fore, prior to actually computing the pair-wise distances between

the particles, the particle data must be gathered. To provide optimal

operational conditions for the core of the brute force procedure

(computing inter-particle distances), we store the gathered particle

coordinates and indices directly in SIMD-friendly data structures.

Finally, we calculate the distance from each interior particle 8 in Ω

to each particle in the extended leaf domain Ω̃. The neighboring

particles indices are �nally written into the neighbor list of particle

8 .

The neighbor list data structure is a collection of �xed size blocks

of memory. The size of the blocks is chosen large enough to hold a

few thousands of single particle neighbor lists. To avoid data races

and false sharing, each thread has its own list of these blocks to

which it has exclusive access. When a neighbor list cannot be ap-

pended to the current active block of a thread, a new block exclusive

to that thread is allocated. No memory reallocations of previously

written neighbor lists are needed. We use a separate structure for

the unlikely cases of a single neighbor list being larger than a block.

To access the neighborhood data, a pointer to the beginning of each

neighbor list is stored together with the number of neighbors. Parti-

cles with consecutive indices are likely to have their neighbor lists

stored consecutively in memory, which improves cache coherency

during the SPH loops.

3.3.4 Branchless Conditional Pushbacks. A very common operation

in our method is to append a value to a list if a certain criterion

is met. This conditional pushback is a crucial operation during the

octree construction and the computation of the neighbor lists. It

has three stages: 1. evaluate the condition, 2. if necessary, write the

value to the destination pointer, and 3. increment the pointer. Due

to branch mispredictions, conditional pushbacks can signi�cantly

slow down routines that are otherwise well optimized.

To avoid this issue, we design our solution so that all performance

critical conditional pushbacks can be carried out using SIMD per-

mutations, which are instructions that can move multiple numbers

inside a special small array (SIMD register) without using branches

in a single instruction. The new order must be provided using a in-

dex map. We can use these permutations for branchless conditional

pushbacks by selectively moving the correct items in the SIMD

register to the front, using the appropriate index map, and then

appending the contents of the register to the destination list. Finally,

we increment the destination pointer by the number of conditionals

evaluated to true.

ACM Trans. Graph., Vol. 41, No. 6, Article 242. Publication date: December 2022.

242:6 • Fernández-Fernández, et al.

J

F

E

B

I

D

A

C

G

H

K

L

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

C A B D E G H F I J K LOrder

1 2 3 3 3 6 6 9 9 11 12 12Z-index

0 1 2 5 7 9 10 12Cell o�sets (7 cells)

Particles almost sorted

Particles sorted by z-index

A B C D E F G H I J K LOrder

2 3 1 3 3 9 6 6 9 11 12 12Z-index

0 1 2 3 5 6 8 9 10 12Cell o�sets (9 cells)

Fig. 3. Mapping particles to the background grid. The particle’s z-index
identifies the cell of a particle. The list of non-empty cells is then given by
the o�set into the particle array each time the z-index changes between
particles adjacent in memory. For perfectly sorted particles the cell o�sets
are monotonically increasing. This is not the case for our method where we
assume only almost sorted particles.

In Listing 1, we show the actual instructions we use for the case of

conditionally appending integer values using the AVX2 instruction

set, which gives us access to permutations of up to eight 32-bit

integers. Let’s assume we have eight integer values (src) that we

want to selectively copy over to a di�erent list (dst) depending

whether eight conditional values indicate true or false (cond). First,

we need to generate a index map from the eight conditional values.

While the index map can be generated programmatically, we found

that using a precomputed lookup table is faster (line 4). To index the

lookup table we need an index between 0 and 255 (all possible eight

true/false combinations) from the conditional array. The instruction

movemask takes the conditional array and returns an integer with

its lower bits as one if true and zero if false which we can use as

index (line 3). Then, we can use the permute SIMD instruction with

the source values and the index map to get the values corresponding

to positive conditionals in front of an 8 value array (line 5). This

shu�ed array is then copied to the destination pointer (line 6).

Finally, the destination pointer must be incremented by the exact

number of bits equals to one in the mask, corresponding to the

number of elements appended to the array, which is determined

T2T1

T3 T4

A B

C D E F

G H

I

J

K L

A B C D E F G H I J K LT0 :

G J KT1 :

G H I K LT2 :

A B C D E GT3 :

E F G H IT4 :

Fig. 4. Subdivision of an octree cell T0. The blue dashed line indicates the
parent cell T0’s enlarged domain Ω̃0 containing 12 non-empty cells A to
L (shaded). The thick black lines and colored backgrounds indicate the
non-overlapping sub-domains Ω1...4 of the child nodes T1...4 dividing Ω0

into quadrants (octants in 3D). The non-empty cells are then assigned to
all child nodes whose extended subdomains Ω̃1...4 (colored dashed lines)
overlap with the respective cell.

1 void pushback_8int(__m256i& src , __m256& cond , int*& dst)

2 {

3 int mask = _mm256_movemask_ps(cond);

4 __m256i index_map = lookup_table[mask];

5 __m256i shuffled_values = _mm256_permutevar8x32_epi32(

src , index_map);

6 _mm256_storeu_si256 ((__m256i *)dst , shuffled_values);

7 dst += _mm_popcnt_u32(mask);

8 }

Listing 1. Branchless conditional pushbacks with SIMD. Eight integers are
conditionally appended to a list without the use of branches. __m256i& src

is a SIMD type that holds the eight source integers, __m256& cond is a
SIMD type that holds the result of eight floating point comparisons, int*
dst is the destination pointer where the values in src corresponding to true
values in cond will be copied into.

with the popcnt instruction (line 7). See Fig. 5 for a diagram of the

process.

ACM Trans. Graph., Vol. 41, No. 6, Article 242. Publication date: December 2022.

Fast Octree Neighborhood Search for SPH Simulations • 242:7

0 0 0 0 0 0 0 0int* dst

F F T F T T F F__m256 cond

0b00101100 = 44int mask

_mm256_movemask_ps(...)

2 4 5 0 0 0 0 0__m256i index_map

1 3 4 11 17 20 22 23int* src

4 17 20 1 1 1 1 1__m256i shuffled_vals

_mm256_storeu_si256(...)

4 17 20 1 1 1 1 1int* dst

lookup_table[44]

0 1 2 3 4 5 6 7

_mm256_permutevar8x32_epi32(src, index_map)

dst += _mm_popcnt_u32(mask)

Fig. 5. A diagram of the branchless SIMD pushback.

In the end, a procedure that would have taken 8 branches and

up to 8 writes and pointer increments, now takes 5 instructions

without any branches. In Section 4, we present benchmarks that

show the improvements this procedure brings to our algorithm in

several of its stages.

3.3.5 Z-sort. As discussed in Section 3.3.1, our method takes ad-

vantage from the particles being almost z-sorted. We do not need to

explicitly sort the particles for our method before every neighbor-

hood search, however, we z-sort them occasionally to keep them

approximately sorted at all times.

Since the cells that we use for the octree are e�ectively a coarse

representation of the particles, we can use them to speed up sorting

the particles. By sorting the cells instead of the particles we can

very signi�cantly decrease the computational time needed for the

z-sort operation. Since the particles are almost z-sorted, the cells

will also be almost z-sorted, therefore sorting them with a suitable

sorting algorithm is very fast. The updated particle order is found

by concatenating all the particle indices belonging to the cell in

the new cell order. As shown in Section 4, this approach can be

signi�cantly faster than explicitly sorting the whole particle array

directly.

3.4 Variable support radius

While the main objective of our octree design is to maximize perfor-

mance for �xed-radius neighborhood search problems, we extend

ourmethod utilizing the adaptive nature of the octree to also support

variable support radii.

Di�erent SPH methods use di�erent de�nitions for the particle

neighborhood in the context of variable support radii. We use the

de�nition proposed by Adams et al. [2007], which states that two

particles 8 and 9 with positions x8 and x9 and support radii A8 and

A 9 are neighbors if

x8 − x9

2
≤ max(A8 , A 9). (3)

This de�nition leads to symmetric neighbor lists where a parti-

cle inside the support radius of another will always appear in the

neighborlist of that second particle, regardless of its support radius.

In the following, we enumerate the changes required for our

method to e�ectively handle variable particle support radii:

(1) We de�ne the octree node support radius AT ∈ R to be the

maximum support radius of all the particles an octree node T

contains. Then, the extended octree node domain Ω̃T ⊂ R3 is

the extension of ΩT by the parent node AT in all coordinate

directions.

(2) A cell 2 is assigned exterior cell of an octree node T if its

domain Ω2 ⊂ R3 intersects the extended octree node search

domain Ω̃T .

(3) In the brute force stage, the particle support radii are fetched

along with their positions and Eq. 3 is used to �nd neighbors.

3.5 Discussion

Up to this point our method has been presented in detail. In the next

section we will validate it with experiments and compare it with the

CLL method introduced by Band et al. [2020], which, to the best of

our knowledge, is the fastest solution to the �xed-radius neighbor-

hood search problem for CPUs. However, to fully understand those

results we �rst need to discuss the conceptual di�erences between

the CLL method and our approach.

We claim, and show in our experiments, that our method is signi�-

cantly faster than the CLL method. This may seem counter-intuitive

since the CLL method does perform fewer pair-wise comparisons,

yet the reason is straightforward: using an octree to decompose the

problem into smaller brute force subproblems (clusters of particles)

results in more balanced brute force tasks which contain the target

amount of particles that bene�ts computational throughput.

By construction, uniform grid methods lock themselves into a

fairly �xed amount of work per brute force task: a center cell, and

its 26 neighbor cells. Since these methods set the cell size equal to

the support radius, and for a typical SPH support radius of twice the

particle sampling distance, each cell has approximately 8 particles,

which makes a total of 216 particles for the 27 cells in each brute

force task. This is assuming perfectly packed particle distributions

which is not always the case in SPH simulations, e.g., when having

thin �uid layers or spray particles. The problem is that, besides not

being well balanced, these tasks do not necessarily have the optimal

size to solve the problem in the most e�cient way possible. All

the brute force preparation work, mainly searching the cells and

fetching the particle data, has to be carried out regardless of the

amount of particles in the task. However, there is an optimal number

of particles for a brute force task which balances its quadratic com-

plexity in regards of the pair-wise comparisons with the overhead

from setting up the brute force itself. As shown in Section 4, we

�nd the optimal task size to be 1000 particles in our benchmark

conditions, which is much more than the 216 particles that uniform

grid methods operate on per task. The bene�ts of larger (or rather

not very small) tasks go beyond reducing the setup overhead of

ACM Trans. Graph., Vol. 41, No. 6, Article 242. Publication date: December 2022.

242:8 • Fernández-Fernández, et al.

the brute force: better cache and SIMD utilization being the most

important ones.

Another important idea we introduce is challenging the concept

that the best cell size for the background uniform grid is the support

radius. As described in the previous section, we use a uniform grid in

our method as a problem reduction step. Since we want to generate

larger brute force tasks in comparison to uniform grid methods, we

do not need such small cells anymore. Larger cells, means fewer

cells and more particles per cell. Having fewer cells reduces the time

to build the octree and the amount of cells at the octree leaves. More

particles per cell means that we load particles in larger batches,

which better amortizes memory accesses. In fact, our experiments

show that an optimal cell size in our benchmark conditions is one

that results in 30 particles per cell on average.

4 RESULTS

In this section we discuss several experiments for our neighborhood

search approach. Moreover, we compare our method with the state-

of-the-art Cell-Linked-Lists method (CLL) [Band et al. 2020] which

is currently one of the fastest �xed-radius neighborhood search

solutions. To ensure a fair comparison, we included our optimiza-

tions (bruteforce, branchless SIMD pushbacks, neighbor lists layout

etc.) into our CLL implementation. The CLL method presented by

Band et al. [2020] lacks a description of low level optimizations. Not

including our optimizations would have resulted in signi�cantly

worse results for the CLL method. However, we did not use variable

cell sizes in our CLL solution because using the support radius as

cell size is one of, if not the most, fundamental design choices of that

method. Since our focus is �xed-radius neighborhood search and

CLL only supports a constant radius for all particles, we perform

the runtime comparisons only for �xed-radius simulations. Addi-

tionally, we show that it is possible to use our modi�ed method in

multi-resolution SPH simulations while keeping the neighborhood

search runtime signi�cantly lower than the other components of

the SPH solver.

All benchmarks were performed on an Intel Core i9-9900K pro-

cessor with 8 physical cores at 3.60 GHz. We used AVX2 instructions

to implement the SIMD vectorization. For the simulations we inte-

grated our neighborhood search method in the open-source SPH

framework SPlisHSPlasH [Bender et al. 2022]. In all benchmarks we

used the pressure solver Divergence-Free SPH [Bender and Koschier

2017] and an implicit boundary representation [Bender et al. 2020].

For the Beach Scene (see Fig. 6), we employ the method by Bender

at al. [2018] to enhance the turbulent behavior of the water. For

the multi-resolution experiments we extended the pressure solver

following the approach of Adams et al. [2007] using averaged kernel

values for particles at the interface of the di�erent resolutions. In

all experiments we used the cubic spline kernel [Monaghan 1992]

and the support radius was twice the initial inter-particle sampling

distance.

4.1 Fixed-Radius Neighborhood Search

We will use two scenes for these experiments. The �rst one, the

Beach Scene (see Fig. 6), consists of 9 million particles pushed by a

Fig. 6. Beach Scene. A wave generator (not rendered) pushes 9 million
particles to a sloped beach shore with obstacles. Surface reconstruction on
the le�. Particle view on the right.

Fig. 7. Fountain Scene. Fluid particles are emi�ed upwards at the top of a
fountain with pools and waterfalls. The number of particles increases up to
3.5 million. Surface reconstruction on the le�. Particle view on the right.

wave generator to an inclined shore. The goal of this scene is to rep-

resent high particle counts in a relatively dense distribution. In the

second scene for the �xed radius experiments, the Fountain Scene

(see Fig. 7), up to 3.5 million particles are emitted into a fountain

with pools and waterfalls. This scene represents simulations with

increasing amounts of particles over time where the particles are

more distributed over the simulation domain.

4.1.1 Octree Calibration. As discussed in Section 3.5, our method

can generate brute force tasks with an approximate target number

of particles, which makes it possible for it to be tuned to speci�c

hardware conditions. For this experiment we take a representative

frame of the Beach Scene and one from the Fountain Scene and

study the e�ect of the uniform grid cell size and the number of

particles for which we stop the recursion and generate a brute force

task, which we call cap. We benchmark each parameter combination

for each simulation, normalize the respective results so the fastest

combination is 1.0 and �nally add and renormalize both benchmarks

into a �nal result in Fig. 8. The results for the individual simulations

are in any case very similar.

ACM Trans. Graph., Vol. 41, No. 6, Article 242. Publication date: December 2022.

Fast Octree Neighborhood Search for SPH Simulations • 242:9

1.0 1.5 2.0 2.5

Cell size / Support radius

500

1000

1500

2000

2500

3000

C
ap

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

al
iz
ed

ru
n
ti
m
e

Fig. 8. Normalized timings for a combination of cap and cell size parameters
of the octree for the Beach and Fountain scenes. The experiment shows that
the optimal values for our benchmark conditions are a cap of 1000 particles
and a cell size of 1.5 times the particles support radius.

1 2 4 8 16

Number of threads

2

4

6

Sp
ee
d
u
p

Our method

CLL

Fig. 9. Parallel scalability comparison between our method and the CLL
method for the Beach Scene.

We can see that the region of optimal values lies for caps between

500 and 1500 and cell sizes between 1.25 and 1.75 times the particles

support radius. For the rest of the experiments, we use a cap value

of 1000 and a cell size of 1.5 times the particle support radius. In the

Beach Scene, cells contain 30.59 particles on average.

4.1.2 Parallel scalability. We use the Beach Scene to investigate the

parallel scalability of our method in comparison to the CLL method.

The results in Figure 9 show that our method scales slightly better

in comparison to our implementation of the CLL method.

4.1.3 SIMD and parallelism. In this experiment, we compare our

method and the CLL method on the Beach Scene in relation to their

CPU usage.

In Table 1 we can see CPUmetrics gathered with the performance

analyzing tool perf for both methods. In general we can see the

large impact SIMD optimized routines have in both methods: Much

fewer total instructions, better cache utilization and greatly reduced

branch mispredictions. However, we can observe that our method

experiences larger bene�ts than the CLL method, which is a direct

consequence of our acceleration structure being better suited to

SIMD optimizations and also to being able to adapt the brute force

tasks to optimal sizes for the hardware.

In Table 2 we can see runtimes for sequential, parallel, scalar

and SIMD modes of both methods on the Beach Scene. While both

Table 1. CPU metrics generated with perf for our method and the CLL
method on the Beach Scene. The table shows the averaged values of 100
benchmark runs.

Our method CLL

scalar SIMD scalar SIMD

Instructions (mil.) 8143 1772 4345 2715

Cache misses (mil.) 10 7 12 11

Branch misses (mil.) 64 2 72 18

Table 2. Scalar/SIMD and sequential/parallel runtime comparison between
Our method and the CLL method. Speedup factor with respect to the
respective sequential scalar timing in parentheses.

Our method CLL

Sequential Scalar 12.87 s (1.0x) 8.47 s (1.0x)

Sequential SIMD 1.64 s (7.9x) 3.15 s (2.7x)

Parallel Scalar 1.55 s (8.3x) 1.02 s (8.3x)

Parallel SIMD 0.26 s (49.0x) 0.52 s (16.2x)

Table 3. Timings for the di�erent stages of our method in scalar and SIMD
mode on the Beach Scene averaged to a single time step.

Scalar SIMD

Stage Time % Time % Speedup

Particles to cells 0.007 s 0.4% 0.003 s 1.3% 2.0x

Octree 0.060 s 3.9% 0.010 s 4.0% 5.7x

Brute force 1.480 s 95.7% 0.248 s 94.7% 6.0x

Total 1.547 s 100.0% 0.262 s 100.0% 5.9x

algorithms scale almost perfectly with the number of cores up to 8,

we can see again how our octree takes much better advantage of

SIMD instructions. As it is shown in the table, our method is actually

slower in scalar mode. This is due to our brute force tasks being

larger, and therefore more pair-wise comparisons must be done than

in the CLL method. However, when we remove the branches and

vectorize the loops, we can make much better use of the hardware,

resulting in a net improvement over the CLL method.

4.1.4 Stages of our method. Table 3, shows the runtime for the main

stages of our method in scalar and SIMD mode. A remarkable result

is that our acceleration structure, constituted by the particles to cells

and the octree stages, takes up only 5.3% of the total neighborhood

search runtime. The rest, 94.7%, of the execution time is spent in

the highly optimized brute force stage, 28.26% of which is gathering

the relevant particle data.

4.1.5 Z-sort. As discussed in Section 3.3.5, every few time steps

we z-sort the particles with the help of the last updated cell list. For

the Beach Scene, sorting the cells to generate the new particle order

takes 4.94ms on average while actually sorting the particles directly

takes 83.0ms. We found that updating the particle data order every

10 steps is frequent enough while being unnoticeable in relation to

the whole operation of the SPH solver.

ACM Trans. Graph., Vol. 41, No. 6, Article 242. Publication date: December 2022.

242:10 • Fernández-Fernández, et al.

10
6

10
7

Number of particles

10
1

10
2

10
3

R
u
n
ti
m
e
[m

s]

Our method (dense)

Our method (sparse)

CLL (dense)

CLL (sparse)

Fig. 10. Problem size scalability comparison for a dense (solid lines) and a
sparse (dashed lines) particle distributions.

4.1.6 Dense vs. Sparse particle distributions. In this experiment we

compare our method and the CLL method in two synthetic scenes,

one with a dense particle distribution and one with a sparse particle

distribution. In the �rst case, particles are sampled with the SPH

sampling distance used in the other experiments which results in 30

neighbors on average. In the second case, particles will be sampled

slightly further apart than support radius so particles do not have

neighbors. In the latter setting, the cell size in both methods is

chosen to be the support radius so that each cell contains just one

particle. The results can be seen in Fig. 10.

In general, we can see quite consistent runtimes when scaling

up the number of particles, from 175 thousand to up to 27 million,

for both methods. Our method solves the dense problem 1.65 times

faster than the sparse one. The CLL method su�ers much more since

it fails to adapt the task sizes and it can solve the dense problem

3.24 times faster than the sparse one. Our method was on average

1.95 times faster than CLL for the dense problem.

4.1.7 Time series. In Fig. (11) we compare the total neighborhood

search runtime per iteration between our method and the CLL

method for the Beach and Fountain scenes. In the Beach Scene,

both methods have very consistent execution times throughout the

simulation. Our method presents a speedup of 1.87 over the CLL

method. On the other hand, in the Fountain Scene, the speedup

ranges from 1.6 to 2.2, with an average of 1.9. This evolution is due

to the increasing number of particles and their changing distribution

in space over time. To demonstrate that the larger cell size alone is

not responsible for the observed speedup, we additionally run the

experiment setting the cell size to the support radius. Our method

is still 1.6 times faster on average in this case.

For reference, in the Beach Scene our neighborhood search took

on average 5.6% (258ms) of the total simulation time (4587ms) per

simulation step. Also in the Beach Scene, the extra memory that our

method needed over the CLL approach, the space required to allocate

the octree, was less than 40MB. The particle positions themselves

took 103MB.

0 100 200 300 400 500

0

100

200

300

400

500

R
u
n
ti
m
e
[m

s]

Our method

CLL

0 200 400 600

Time (frame number)

0

50

100

150

200

R
u
n
ti
m
e
[m

s]

Our method

CLL

Fig. 11. Comparison between the total runtime of our method and the CLL
method for the Beach (on top) and Fountain (below) scenes. The moving
average has been overlayed to the original data for clarity.

4.2 Multi-Resolution Neighborhood Search

Wedemonstrate the applicability of our neighborhood searchmethod

in the context of multi-resolution SPH simulations.

4.2.1 Comparison with CLL for variable support radii. To show the

need for special handling when the support radius is not globally

constant, we compare the CLL method against our method which

can handle di�erent support radii. This experiment consists of two

large blocks of �uid particles side by side sampled regularly on a grid.

One of the blocks contains 1 million small particles, with sampling

distance of 30 and a corresponding support radius of A0 = 230.

For the other coarser grid, we use a sampling distance 31 = U30
with a corresponding support radius of A1 = 2U30, where U is the

scale ratio for the particle sampling and support radius between the

two grids. Particles fully inside their own grids have, on average,

approximately 30 neighbors.

Since the CLLmethod does not support di�erent support radii, the

largest radius must be used globally. As U grows, the small particles

in the �ne grid will �nd more and more neighbors. However, these

extra neighbors are not needed for the small particles since their

support radius is smaller than the one used by the CLL method.

This increase in the number of unwanted neighbors is cubic in the

support radius and, as we can see in Table 4, it slows down the

neighborhood search very signi�cantly as the support radius ratio

increases.

ACM Trans. Graph., Vol. 41, No. 6, Article 242. Publication date: December 2022.

Fast Octree Neighborhood Search for SPH Simulations • 242:11

Table 4. Runtime comparison between the CLL method and our method
for multi-resolution simulations. Since the CLL method has to globally use
the largest support radius, its runtime scales very poorly in multi-resolution
simulations in comparison to our method.

Scale ratio (U) x1.0 x1.5 x2.0 x2.5 x3.0

Fine particles 1.00M 1.00M 1.00M 1.00M 1.00M

Coarse particles 1.00M 0.29M 0.12M 0.06M 0.04M

CLL 0.109 s 0.111 s 0.232 s 1.328 s 3.961 s

Ours 0.065 s 0.051 s 0.047 s 0.046 s 0.049 s

Fig. 12. Multi-resolution single-phase double dam break scene with the
Stanford Lucy statue as obstacle in the center. Two fluid particle sets with
di�erent radii are used: 450 thousand coarse particles (blue color map) and
3.6 million fine particles (yellow color map). The small particles have half
the radius of the large ones.

4.2.2 Multi-Resolution, Single Phase. In Fig. 12, we show the classic

double dam break simulation, in this case with a center obstacle,

but in the multi-resolution setting. We simulate a single �uid phase,

the liquid, but we employ two di�erent particle resolutions, each

of them with a constant particle radius. The �ne particle set has a

slightly lower density so it settles on top after the �rst splash to

provide high detail �uid motions while the coarse particle set stays

below. The �ne particle set contains 3.6 million particles of 5mm

particle radius. The coarse set has 450 thousand particles of 10mm

particle radius, twice the radius of the �ne set.

4.2.3 Multi-Resolution, Fluid-Solid. In Fig. 13, we show an example

of a multi-resolution simulation with one �uid phase and three

elastic objects solved with the method by Kugelstadt et al. [2021]. By

using fewer particles in the elastic bodies, we can alleviate the main

drawback of the elastic solver, the quadratic memory complexity and

initialization times. Having a coarser discretization for the elastic

objects with respect to the �uid does not have a noticeable impact

in the result after the surface reconstruction. There are 5.6 million

particles of 10mm particle radius in the �uid phase and a total of 12

thousand particles of 25mm in the solid phase, a factor of 2.5 larger.

4.2.4 Multi-Resolution, Two Phase. Another use case for SPH simu-

lations with di�erent resolution particles is the simulation of �uids

with di�erent viscosities, modeled using the method by Weiler et

al. [2018], in di�erent resolutions. In Fig. 14, we show a two-phase

Fig. 13. Multi-resolution fluid-solid simulation of a high-resolution fluid
and low-resolution deformable Stanford bunnies. A rigid box swings with
5.6 million fluid particles and a total of 12 thousand solid particles inside.
Particles belonging to the deformable bodies have a 2.5 times larger radius
than the ones of the fluid phase. Surface view on the top, particle view on
the bo�om.

Fig. 14. Multi-resolution two-phase simulation of high- and low-viscosity
fluids. Six emi�ers pour up to 5million fluid particles into a pool with a static
rigid body (Stanford Lucy) and three highly viscous Stanford Armadillos.
The 90 thousand particles of the viscous material have a 2.5 times larger
radius than the fluid particles.

simulation where a highly viscous material experiences deforma-

tions at a much lower frequency than a low viscous �uid. In this

setting, we can simulate the low viscous �uid with much higher

particle resolution and save computational e�ort on the highly vis-

cous one. The low viscous �uid is discretized with up to 5 million

particles of 8.4mm particle radius and the highly viscous one with

90 thousand particles of a particle radius of 21mm, a factor of 2.5

larger radius.

In all non-�xed radius simulations, the relative runtime of our

neighborhood search method ranged between 5% and 10% of the

total simulation time.

ACM Trans. Graph., Vol. 41, No. 6, Article 242. Publication date: December 2022.

242:12 • Fernández-Fernández, et al.

5 LIMITATIONS

Our method inherits the usual corner cases of octrees. The recursive

uniform subdivision of the octree can lead to linear chains in the

tree where all particles repeatedly end up in the same child node. In

simulation settings, this realistically only happens in cases where

there is a very large distance between groups of particles. This would

usually only cost a modest number of traversals over the particle

data. However, if there are local instabilities in the simulation, it is

possible for single particles to rapidly travel large distances away

from the intended simulation domain. This is easily remedied by

ignoring particles far outside of some prede�ned region of interest

during the uniform grid construction.

It is also possible to detect and skip linear chains during the octree

construction by jumping ahead to the smallest octree node that is

large enough to contain the extended domains of all cells of the

current octree node. We did not �nd it necessary to explicitly handle

this problem for any of our simulations.

Our method may also be suboptimal for large ratios in support

radii in certain con�gurations. For example, if most particles have

a much greater radius than the particle with the smallest radius,

then many grid cells will only contain a single particle with a large

radius, reducing the e�ectiveness of the particle-to-cell aggregation.

However, this is not the case in a typical SPH simulation, and our

focus was in maximizing the performance on the �xed-radius case.

6 CONCLUSION AND FUTURE WORK

Neighborhood search is a critical component in SPH simulations.

We present a new approach to the neighborhood search problem

that departs from the long-standing assumption that the optimal

cell size to use in the neighborhood search is the kernel support

radius. We show that, due to the ability to generate more balanced

tasks and to better utilize the CPU, octrees are better suited than

uniform grids, even for �xed-radius neighborhood search problems.

In addition, we show that uniform grids, which we also use as a

problem reduction step, are more e�ective when the cell size is not

chosen to be the kernel support radius, but it is instead tuned to

maximize computation throughput during the brute force stage. We

included discussions and extensive experimentation to show the

behavior of our method in comparison to a state-of-the-art method

for �xed-radius neighborhood search. Our method achieved up to

1.9 speedup in real world large SPH simulations in comparison to

the well-established Cell-Linked-List method, taking up around 5%

of the total SPH simulation runtime.

Additionally, we show that it is possible to exploit the adaptive

nature of our octree acceleration structure to enhance the method

to support variable support radii. We use this version of our neigh-

borhood search in multi-resolution SPH simulations, including �uid-

solid interaction and highly viscous �uids, with radius ratios of up

to 3. The runtime of the neighborhood search was 10% or less of the

total simulation runtime.

We have evaluated our method for representative �xed-radius

and multi-resolution use cases. Fully adaptive SPH simulations,

however, can feature particle radius ratios beyond what was shown

in this paper [Winchenbach and Kolb 2020]. We believe that our

method will also work well in such settings, but a comprehensive

comparison is left for future work.

ACKNOWLEDGMENTS

The Armadillo, Bunny, Lucy and Asian Dragon models are courtesy

of the Stanford Computer Graphics Laboratory. The presented inves-

tigations were carried out at RWTH Aachen University within the

framework of the Collaborative Research Centre SFB1120-236616214

“Bauteilpräzision durch Beherrschung von Schmelze und Erstarrung

in Produktionsprozessen” and funded by the Deutsche Forschungs-

gemeinschaft e.V. (DFG, German Research Foundation). The spon-

sorship and support is gratefully acknowledged.

REFERENCES
Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J. Guibas. 2007. Adaptively

Sampled Particle Fluids. ACM Transactions on Graphics 26, 3 (2007), 48.
Stefan Band, Christoph Gissler, and Matthias Teschner. 2020. Compressed Neighbour

Lists for SPH. Computer Graphics Forum 39, 1 (2020), 531–542.
Jan Bender et al. 2022. SPlisHSPlasH Library. https://github.com/

InteractiveComputerGraphics/SPlisHSPlasH.
Jan Bender and Dan Koschier. 2017. Divergence-Free SPH for Incompressible and

Viscous Fluids. IEEE Transactions on Visualization and Computer Graphics 23, 3
(2017), 1193–1206.

Jan Bender, Dan Koschier, Tassilo Kugelstadt, and Marcel Weiler. 2018. Turbulent
micropolar SPH �uids with foam. IEEE transactions on visualization and computer
graphics 25, 6 (2018), 2284–2295.

Jan Bender, Tassilo Kugelstadt, MarcelWeiler, andDanKoschier. 2020. Implicit Frictional
Boundary Handling for SPH. IEEE Transactions on Visualization and Computer
Graphics 26, 10 (2020), 2982–2993.

Mathieu Desbrun and Marie-Paule Cani. 1999. Space-time adaptive simulation of highly
deformable substances. Ph. D. Dissertation. INRIA.

J. M. Domínguez, A. J. C. Crespo, M. Gómez-Gesteira, and J. C. Marongiu. 2010. Neigh-
bour lists in smoothed particle hydrodynamics. International Journal for Numerical
Methods in Fluids 67, 12 (nov 2010), 2026–2042.

Robert A Gingold and Joseph J Monaghan. 1977. Smoothed particle hydrodynamics: the-
ory and application to non-spherical stars. Monthly notices of the royal astronomical
society 181, 3 (1977), 375–389.

Christoph Gissler, Andreas Henne, Stefan Band, Andreas Peer, and Matthias Teschner.
2020. An Implicit Compressible SPH Solver for Snow Simulation. ACM Transactions
on Graphics 39, 4 (Aug. 2020), 1–16.

Simon Green. 2010. Particle simulation using CUDA. NVIDIA whitepaper 6 (2010),
121–128.

Julian Gross, Marcel Köster, and Antonio Krüger. 2019. Fast and E�cient Nearest Neigh-
bor Search for Particle Simulations. In Computer Graphics and Visual Computing
(CGVC). The Eurographics Association.

Takahiro Harada, Seiichi Koshizuka, and Yoichiro Kawaguchi. 2007. Sliced data structure
for particle-based simulations on GPUs. In Proceedings of the 5th international
conference on Computer graphics and interactive techniques in Australia and Southeast
Asia - GRAPHITE '07. ACM Press.

Lars Hernquist and Neal Katz. 1989. TREESPH-A uni�cation of SPH with the hierarchi-
cal tree method. The Astrophysical Journal Supplement Series 70 (1989), 419–446.

Christopher Jon Horvath and Barbara Solenthaler. 2013. Mass Preserving Multi-Scale
SPH. Technical Report.

Markus Ihmsen, Nadir Akinci, Markus Becker, and Matthias Teschner. 2011. A parallel
SPH implementation on multi-core CPUs. Comput. Graph. Forum 30 (03 2011),
99–112.

Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias
Teschner. 2014a. Implicit Incompressible SPH. IEEE Transactions on Visualization
and Computer Graphics 20, 3 (mar 2014), 426–435.

Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias
Teschner. 2014b. SPH Fluids in Computer Graphics.

Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2022. A Survey
on SPH Methods in Computer Graphics. Computer Graphics Forum 41, 2 (2022).

Tassilo Kugelstadt, Jan Bender, José Antonio Fernández-Fernández, Stefan Rhys Jeske,
Fabian Löschner, and Andreas Longva. 2021. Fast Corotated Elastic SPH Solids with
Implicit Zero-Energy Mode Control. Proc. ACM Comput. Graph. Interact. Tech. 4, 3,
Article 33 (Sept. 2021), 21 pages.

JJ Monaghan. 1992. Smoothed Particle Hydrodynamics. Annual Review of Astronomy
and Astrophysics 30, 1 (1992), 543–574. arXiv:arXiv:1007.1245v2

Guy M Morton. 1966. A computer oriented geodetic data base and a new technique in
�le sequencing. (1966).

ACM Trans. Graph., Vol. 41, No. 6, Article 242. Publication date: December 2022.

https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
https://arxiv.org/abs/arXiv:1007.1245v2

Fast Octree Neighborhood Search for SPH Simulations • 242:13

Andreas Peer, Christoph Gissler, Stefan Band, and Matthias Teschner. 2017. An Implicit
SPH Formulation for Incompressible Linearly Elastic Solids. Computer Graphics
Forum 37, 6 (dec 2017), 135–148.

Brandon Pelfrey and Donald House. 2010. Adaptive Neighbor Pairing for Smoothed Par-
ticle Hydrodynamics. In Advances in Visual Computing. Springer Berlin Heidelberg,
192–201.

Barbara Solenthaler and Markus Gross. 2011. Two-Scale Particle Simulation. ACM
Transactions on Graphics 30, 4, Article 81 (jul 2011), 8 pages.

Tetsuya Takahashi, Yoshinori Dobashi, Issei Fujishiro, Tomoyuki Nishita, and Ming C.
Lin. 2015. Implicit Formulation for SPH-based Viscous Fluids. Computer Graphics
Forum 34, 2 (may 2015), 493–502.

Min Tang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018. PSCC: Parallel
Self-Collision Culling with Spatial Hashing on GPUs. Proceedings of the ACM on
Computer Graphics and Interactive Techniques 1, 1 (jul 2018), 1–18.

Loup Verlet. 1967. Computer "Experiments" on Classical Fluids. I. Thermodynamical
Properties of Lennard-Jones Molecules. Physical Review 159, 1 (jul 1967), 98–103.

G. Viccione, V. Bovolin, and E. Pugliese Carratelli. 2008. De�ning and optimizing algo-
rithms for neighbouring particle identi�cation in SPH �uid simulations. International
Journal for Numerical Methods in Fluids 58, 6 (oct 2008), 625–638.

Marcel Weiler, Dan Koschier, Magnus Brand, and Jan Bender. 2018. A Physically
Consistent Implicit Viscosity Solver for SPH Fluids. Computer Graphics Forum 37, 2
(2018), 145–155.

James S.Willis, Matthieu Schaller, Pedro Gonnet, Richard G. Bower, and PeterW. Draper.
2018. An E�cient SIMD Implementation of Pseudo-Verlet Lists for Neighbour
Interactions in Particle-Based Codes. Advances in Parallel Computing 32 (2018).

Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb. 2016. Constrained Neigh-
bor Lists for SPH-based Fluid Simulations.

Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb. 2017. In�nite Continuous
Adaptivity for Incompressible SPH. ACM Transactions on Graphics 36, 4 (2017).

Rene Winchenbach and Andreas Kolb. 2020. Multi-Level Memory Structures for Simu-
lating and Rendering Smoothed Particle Hydrodynamics. Computer Graphics Forum
39, 6 (2020), 527–541.

Rene Winchenbach and Andreas Kolb. 2021. Optimized Re�nement for Spatially
Adaptive SPH. ACM Transactions on Graphics 40, 1 (feb 2021), 1–15.

Xilin Xia and Qiuhua Liang. 2016. A GPU-accelerated smoothed particle hydrodynamics
(SPH) model for the shallow water equations. Environmental Modelling & Software
75 (jan 2016), 28–43.

ACM Trans. Graph., Vol. 41, No. 6, Article 242. Publication date: December 2022.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Smoothed particle hydrodynamics
	2.2 Neighborhood search

	3 Method
	3.1 Problem description
	3.2 Method overview
	3.3 Implementation
	3.4 Variable support radius
	3.5 Discussion

	4 Results
	4.1 Fixed-Radius Neighborhood Search
	4.2 Multi-Resolution Neighborhood Search

	5 Limitations
	6 Conclusion and Future Work
	Acknowledgments
	References

